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Spatial discretization schemes commonly used in global meteorological applica-
tions are currently limited to spectral methods or low-order finite-difference/finite-
element methods. The spectral transform method, which yields high-order approx-
imations, requires Legendre transforms, which have a computational complexity of
O(N 3), where N is the number of subintervals in one dimension. Thus, high-order
finite-element methods may be a viable alternative to spectral methods. In this study,
we present a new numerical method for solving the shallow water equations (SWE) in
spherical coordinates. In this implementation, the SWE are discretized in time with
the semi-implicit leapfrog method, and in space with the cubic spline collocation
method on a skipped latitude–longitude grid. Numerical results for the Williamson
et al. SWE test cases [D. L. Williamson, J. B. Blake, J. J. Hack, R. Jakob, and
P. N. Swarztrauber, J. Comput. Phys. 102, 211 (1992)] are presented to demonstrate
the stability and accuracy of the method. Results are also shown for an efficiency
comparison between this method and a similar method in which spatial discretization
is done on a uniform latitude–longitude grid. c© 2002 Elsevier Science (USA)

Key Words: shallow water equations; cubic splines; collocation methods; numerical
weather prediction; finite element; leapfrog scheme; semi-implicit scheme; spherical
coordinates.

1. INTRODUCTION

Climate modeling, which predicts statistical meteorological quantities, is important, as it
helps us understand, for example, the mechanisms of atmospheric and oceanic circulations,
as well as the effects of technological advancements on the atmosphere. The importance of
weather-prediction is well understood, as weather affects us in a multitude of ways through
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agriculture, recreation, and transportation. The accuracy of climate and weather prediction
depends on many factors, among which are the accuracy of the knowledge of the state of
the atmosphere at initial time, the numerical methods applied, and the resolution used in
the methods. Because computational atmospheric problems are known to be very time-
consuming, there is a lot of interest among the scientific community in studying accurate
and efficient methods for these problems. One way to achieve high accuracy in climate- and
weather-prediction computations is to use high-order discretization methods.

Spatial discretization schemes that are commonly used in global meteorological simula-
tions are spectral schemes, finite-difference schemes, and finite-element schemes. Currently
there is some controversy over which of the three approaches is preferable for the integration
of weather models. For instance, models at the National Center for Atmospheric Research
(NCAR) and the European Center for Medium-Range Weather Forecasts (ECMWF) incor-
porate the spectral transform method [11, 21], whereas a model developed by the Canadian
Meteorological Centre in partnership with the Meteorological Research Branch (CMC-
MRB) adopts a variable-resolution cell-integrated finite-element scheme [1, 2].

The spectral transform method represents the solution of a problem in spherical coordi-
nates in terms of spherical harmonics. Since spherical harmonics are the natural represen-
tation of the solution of a two-dimensional problem on the sphere, the spectral transform
method provides a natural solution to a technical aspect of the pole problem, which is that
some variables (e.g., the longitudinal and latitudinal wind images) may not be well defined
at the poles. Also, since the spherical harmonics are eigenfunctions of the Laplacian on
the sphere, the semi-implicit Helmholtz problem is relatively trivial to solve in spectral
space. Another advantage of the spectral transform method is that, provided the solution
is sufficiently smooth, the method generates numerical approximations with exponential
convergence and thus with accuracy higher than most other methods (e.g., finite-difference
methods) for sufficiently high spatial resolutions.

Although the spectral transform method seems ideal for the spherical domain, it also has
some disadvantages. Provided that an optimal solver is applied for the solution of the linear
system arising from the Helmholtz problem, the computational cost of finite-difference and
finite-element methods applied to the shallow water equations (SWE) on the sphere increases
quadratically with the number of grid points in one dimension (i.e., O(N 2), where N is the
number of spatial subintervals in one dimension). However, the cost of performing spectral
transforms increases more rapidly. In the case of Fourier transforms in the longitudinal
direction, fast Fourier transforms (FFTs) may be used and their computational cost grows
as O(N 2 log(N )). An efficient method for performing Legendre transforms, analogous to
FFTs, has not yet been developed. Thus, the Legendre transforms in the latitudinal direction
are often performed by summation and their costs escalate at a rate of O(N 3). Moreover,
the spectral method is formally equivalent to a least-squares approximation that minimizes
the mean square error over the global domain. This implies that the size of the error is likely
to be the same everywhere. This may be a serious disadvantage in more comprehensive
atmospheric models for a field, such as water vapor, for which the average value varies
greatly over the globe. In the case of water vapor, for example, a small absolute error may
be insignificant in equatorial regions, but it may completely alter the character of the field
in polar regions [20]. Thus, there is interest in the atmospheric community in developing
alternative high-order numerical methods.

In this study, we present a high-order finite-element spatial discretization method for the
SWE in spherical coordinates. The SWE are discretized in time using the semi-implicit
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leapfrog method, and in space using the cubic spline collocation method on a skipped
latitude–longitude grid. The simplest numerical grid covering the entire sphere is the famil-
iar latitude–longitude grid, but the convergence of meridians toward the poles necessitates
special measures if such a grid is to be used for a numerical simulation of the atmo-
sphere. When an Eulerian time integration method is used, time-step size is restricted by
the Courant–Friedrichs–Lewy (CFL) condition and is determined essentially by the shortest
resolvable scale divided by the largest phase speed of modes treated explicitly. Rather than
allow the atypically high resolution near the poles to dictate time-step size, one may use a
skipped grid in which the longitudinal increment �� increases near the poles.

In Section 2, we construct a skipped grid and define bicubic spline basis functions.
We then describe the procedures with which the SWE are discretized in time using the
semi-implicit leapfrog scheme and in space using the cubic spline collocation method. In
Section 3, we present numerical results for the Williamson et al. test suite for the SWE
in spherical geometry [19] and we show that the method gives rise to stable numerical
approximations that are third order near the poles and fourth order elsewhere. We also show
that the method has a computational complexity of O(N 2) and we compare the efficiency of
this method with that of a similar method with spatial discretization done on a uniform grid.

2. MODEL FORMULATION

The SWE, which describe the inviscid flow of a thin layer of fluid in two dimensions
[10], have been used for many years by the atmospheric modeling community as a vehicle
for testing promising numerical methods for solving atmospheric and oceanic problems.
Because Earth is approximately spherical, most global atmospheric models in use today are
based on spherical coordinates. To define the equations on the sphere, let u and v be the
wind velocity components in the longitudinal and latitudinal directions, respectively, and
� be the geopotential perturbation from the mean geopotential �∗, which is assumed to be
constant. Let R be the radius of the earth, � be its rotational speed, and f = 2� sin � be the
Coriolis parameter, where R and � are assumed to be constant. In spherical coordinates,
the SWE are given by

ut + uu�

R cos �
+ vu�

R
−

(
f + u tan �

R

)
v + ��

R cos �
= 0, (1)

vt + uv�

R cos �
+ vv�

R
+

(
f + u tan �

R

)
u + ��

R
= 0, (2)

� t + u��

R cos �
+ v��

R
+ � +�∗

R cos �
(u� + (v cos �)�) = 0, (3)

where the subscript denotes the partial derivative with respect to that variable. Since u
and v are multivalued at the poles, we adopt the approach of Côté and Staniforth [4] and
compute the components of the wind images instead: U ≡ u cos �/R and V ≡ v cos �/R.
Thus, expressing (1)–(3) in terms of U and V , we solve the equations

Ut + UU�

cos2 �
+ V U�

cos �
− f V + ��

R2
= 0, (4)

Vt + U V�

cos2 �
+ V V�

cos �
+ f U + cos �

R2
�� +� = 0, (5)
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cos �� t + U��

cos �
+ V�� + (� + �∗)

(
U�

cos �
+ V�

)
= 0, (6)

where � ≡ (U 2 + V 2) sin �/ cos2 �.
The geopotential is assumed to be periodic over the sphere; that is, � is periodic along

the longitude and along any two meridians associated with longitudes � and � + �. That is,

D(k)
� �(�, �) = D(k)

� �(� + 2�, �), D(k)
� �(�, ±�/2) = (−1)k D(k)

� �(� + �, ±�/2), (7)

where k is a nonnegative integer and D(k)
s denotes the kth derivative operator with respect

to the variable s. The wind images U and V are periodic along the longitude and satisfy the
homogeneous Dirichlet boundary conditions at the poles. That is,

D(k)
� U (�, �) = D(k)

� U (� + 2�, �), U (�, ±�/2) = 0. (8)

The latitudinal wind image V satisfies similar conditions.

2.1. Cubic Splines on a Skipped Grid

The SWE are discretized in space using the cubic spline collocation method on a skipped
grid. In this section, we construct the skipped grid and define two sets of bicubic spline
basis functions that satisfy the boundary conditions (7) and (8), respectively.

On a uniform latitude–longitude grid, the meridians converge toward the poles and the
physical distance between grid lines becomes small. Thus, as we show in Section 3.2, the
time-step size required for a Eulerian method to maintain stability may become prohibitively
restrictive owing to the CFL condition. Rather than allow the atypically high resolution near
the poles to dictate the time-step size, one may use a grid in which the longitudinal increment
�� increases near the poles [7, 13, 16, 18]. Such a grid is commonly known as a skipped
latitude–longitude grid. In [8], Göttelmann solved the SWE using a linear spline collocation
scheme on a skipped latitude–longitude grid and obtained second-order numerical approx-
imations. In this study, we present a cubic spline collocation scheme for discretizing the
SWE on a skipped grid, which is constructed similarly to that described in [8].

To define the skipped-grid partition, let k be a positive integer and N� = 2k be the number
of subintervals along the latitudinal dimension (−�/2 ≤ � ≤ �/2). The number of grid
points along a latitude circle may decrease toward the poles. We define N�, the number of
grid points along the j th latitude circle, to be

N� j =




0, j = 0, N�,

2
1+log2((N�− j)�)�, 0 < j < N�

4 ,

2
1+log2( j�)�, 3N�

4 < j < N�,

2N�,
N�

4 ≤ j ≤ 3N�

4 ,

(9)

where j = 0, . . . , N� .
Let �� j = 2�/N� j for j = 0, . . . , N� , and �� = �/N� . Let �

( j)
i = i�� j and �j = j��.

Then the skipped-grid partition is defined by S = {(�( j)
i , �j )}, for i = 0, . . . , N� j − 1 and

j = 0, . . . , N� . The polar region of the skipped grid (�/4 ≤ � ≤ �/2) is shown in Fig. 1 for
N� = 32.
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FIG. 1. The polar region of the skipped grid with N� = 32.

We now define the piecewise bicubic spline basis functions on S. The model cubic spline
function �̄ in one dimension is defined by

�̄ (�) =




�3, 0 ≤ � ≤ 1,

1 + 3(� − 1) + 3(� − 1)2 − 3(� − 1)3, 1 < � ≤ 2,

1 + 3(3 − �) + 3(3 − �)2 − 3(3 − �)3, 2 < � ≤ 3,

(4 − �)3, 3 < � ≤ 4,

0, otherwise.

(10)

Let �
( j)
i (�) = 1

4 �̄( �
�� j

− i + 2). Define the one-dimensional periodic cubic basis functions
along the j th latitude circle by

�
( j)
0 (�) =




�
( j)
0 (�), � ∈ [

�
( j)
0 , �

( j)
2

]
,

�
( j)
N� j

(�), � ∈
[
�

( j)
N� j −2

, �
( j)
N� j

)
,

0, otherwise,

�
( j)
1 (�) =




�
( j)
1 (�), � ∈ [

�
( j)
0 , �

( j)
3

]
,

�
( j)
N� j +1(�), � ∈

[
�

( j)
N� j −1

, �
( j)
N� j

)
,

0, otherwise,

(11)

�
( j)
i (�) = �

( j)
i (�), i = 2, . . . , N� j − 2,

�
( j)
N� j − 1(�) =




�
( j)
0 (�), � ∈ [

�
( j)
0 , �

( j)
1

]
,

�
( j)
N� j +1(�), � ∈

[
�

( j)
N� j −3

, �
( j)
N� j

)
,

0, otherwise.
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Because the wind images and the geopotential satisfy different boundary conditions, dif-
ferent basis functions are defined for them. We first define the bicubic spline basis functions
{	̂i, j } for U and V . Let � j (�) = 1

4 �̄( � + �/2
��

− j + 2). We define the one-dimensional cubic
spline basis functions that satisfy homogeneous Dirichlet boundary conditions by

�̂0(�) = �0(�) − 4�−1(�), �̂1(�) = �1(�) − �−1(�),

�̂ j (�) = � j (�), j = 2, . . . , N� − 2, (12)

�̂N�−1(�) = � N�−1(�) − � N�+1(�), �̂N�
(�) = � N�

(�) − 4� N�+1(�).

The bicubic spline basis functions for U and V are defined on S by

	̂0,0(�, �) = �̂0(�),

	̂i, j (�, �) = �
( j)
i (�)�̂ j (�), (13)

	̂0,N�
(�, �) = �̂ N�

(�),

for i = 0, . . . , N� j − 1 and j = 1, . . . , N� − 1. By construction, the basis functions {	̂i, j }
are periodic along the longitude and vanish at the poles; that is, they satisfy the boundary
conditions (8) for k = 0, 1, and 2.

The bicubic spline basis functions for �, denoted by {	i, j }, are designed to satisfy the
boundary conditions (7). Let m j (i) ≡ i mod N� j . The basis functions 	i, j are defined on
S by

	0,0(�, �) =
{

�0(�), � ∈ [�0, �2],

0, otherwise,

	i,1(�, �) =




�(1)
i (�)�1(�), � ∈ [

�(1)
m1(i−2), �(1)

m1(i+2)

]
, � ∈ [�0, �3],

�(1)
m1(k)(�)�−1(�), � ∈ [

�(1)
m1(k−2), �(1)

m1(k+2)

]
, � ∈ (�0, �1],

0, otherwise,

for k = i + N�1

/
2, i = 0, . . . , N�1 − 1,

	i, j (�, �) = �
( j)
i (�)� j (�), for i = 0, . . . , N� j − 1, j = 2, . . . , N� − 2, (14)

	i,N� − 1(�, �) =




�(N�−1)
i (�)� N�−1(�), � ∈

[
�(N�−1)

m N�−1(i−2), �(N�−1)
m N�−1(i+2)

]
,

� ∈ [
�N�−3, �N�

]
,

�(N�−1)
m N� − 1 (k)(�)� N�+1(�), � ∈

[
�(N�−1)

m N�−1(k−2), �(N�−1)
m N�−1(k+2)

]
,

� ∈ [
�N�−3, �N�

)
,

0, otherwise,

for k = i + N�N�−1

/
2, i = 0, . . . , N�N�−1 − 1,

	0,N�
(�, �) =

{
� N�

(�), � ∈ [
�N�−2, �N�

]
,

0, otherwise.
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By construction, the basis functions {	i, j } satisfy the boundary conditions (7) for k = 0, 1,
and 2. In a finite-difference method discretized on a skipped grid, latitudinal circles with
different grid resolutions are often connected by means of spatial interpolation (e.g., [16]).
In our method, however, interpolation is done implicitly using the cubic spline representation
of the function.

2.2. Discretization of the Shallow Water Equations

To advance the SWE in time, (4)–(6) are first discretized in time using the semi-implicit
leapfrog scheme:

U n+1 + �t

R2
�n+1

� = U n−1 − �t

R2
�n−1

� − 2�t

(
1

cos2 �

(
U nU n

� + cos �V nU n
�

) − f V n

)
,

(15)

V n+1 + �t

R2
cos ��n+1

� = V n−1 − �t

R2
cos ��n−1

�

− 2�t

(
1

cos2 �

(
U n V n

� + cos �V n V n
�

) + f U n −�n

)
, (16)

cos ��n+1 + �t�∗

cos �

(
U n+1

� + cos �V n+1
�

)

= cos ��n−1 − �t�∗

cos �

(
U n−1

� + cos �V n−1
�

) − 2�t

cos �

(
U n�n

� + cos �V n�n
�

+�n
(
U n

� + cos �V n
�

))
. (17)

Equations (15)–(17) are spatially discretized, and a Helmholtz equation for �n+1 is de-
rived from the resulting spatially discretized equations. The Helmholtz equation is derived
algebraically rather than analytically (i.e., spatial discretization is done before the Helmholtz
equation is derived) in order to preserve the phase velocity of the Rossby waves [17]. To
discretize (15)–(17) in space, we approximate the target functions U n+1, V n+1, and �n+1

as linear combinations of the bicubic basis functions (13) and (14); that is,

U n+1
� (�, �) =

N� j −1,N�∑
i, j=0

Un+1
i, j 	̂i, j (�, �), (18)

V n+1
� (�, �) =

N� j −1,N�∑
i, j=0

Vn+1
i, j 	̂i, j (�, �), (19)

�n+1
� (�, �) =

N� j −1,N�∑
i, j=0

	n+1
i, j 	i, j (�, �). (20)

The spline approximations (18)–(20) are substituted into (15)–(17) and the spline co-
efficients Un+1

i, j , Vn+1
i, j , and 	n+1

i, j are determined by imposing the collocation conditions
at the appropriate collocation points. Normally, the collocation points for a cubic spline
collocation method are the grid points, that is, the set S. However, in this implementation,
the poles (� = ±�/2), which are included in S, are not chosen to be collocation points for
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the following reasons. As �n+1
� vanishes at the poles, (15) and (16) reduce to the latitudinal

boundary conditions for U n+1 and V n+1,

U n+1(�, ±�/2) = 0, V n+1(�, ±�/2) = 0,

respectively, thus giving rise to an insufficient number of conditions for determining the
spline approximations (18)–(20). Moreover, although the term U n+1

� /cos � in (17) is
bounded at the poles, its value cannot be computed from the spline representation of U n+1.
Thus, we choose the collocation points to be


 ≡ {

i, j ≡ (

�
( j)
i , �j

)}N� j −1,N�−1

i=0, j=1 ∪ {
0,0 ≡ (0, −�/2 + ��/2), 
0,N�
≡ (0, �/2 − ��/2)}.

Substituting (18)–(20) into (15)–(17) and imposing the collocation conditions at 
, we
obtain

U n+1
� (
i, j ) + �t

R2
D��n+1

� (
i, j )

= U n−1
� (
i, j ) − �t

R2
D��n−1

� (
i, j ) − 2�t

(
1

cos2 �j

(
U n

�(
i, j )D�U n
�(
i, j )

+ cos �j V
n
�(
i, j )D�U n

�(
i, j )
) − f V n

�(
i, j )

)

≡ Rn
u (
i, j ), (21)

V n+1
� (
i, j ) + �t

R2
cos �j D��n+1

� (
i, j )

= V n−1
� (
i, j ) − �t

R2
cos �j D��n−1

� (
i, j ) − 2�t

(
1

cos2 �j

(
U n

�(
i, j )D�V n
�(
i, j )

+ cos �j V
n
�(
i, j )D�V n

�(
i, j )
) + f U n

�(
i, j ) −�n
�(
i, j )

)

≡ Rn
v (
i, j ), (22)

cos �j�
n+1
� (
i, j ) + �t�∗

cos �j

(
D�U n+1

� (
i, j ) + cos �j D�V n+1
� (
i, j )

)

= cos �j�
n−1
� (
i, j ) − �t�∗

cos �j

(
D�U n−1

� (
i, j ) + cos �j D�V n−1
� (
i, j )

)

− 2�t

cos �j

(
U n

�(
i, j )D��n
�(
i, j ) + cos �j V

n
�(
i, j )D��n

�(
i, j )

+�n
(

D�U n
�(
i, j ) + cos �j D�V n

�(
i, j )
))

≡ Rn
�(
i, j ), (23)

where �n
� ≡ (U n

�
2 + V n

�
2) sin �/cos2 �.

To solve (21)–(23), the divergence terms are eliminated from the discretized continuity
equation (23) using (21) and (22) to yield a Helmholtz equation. To this end, let bold typeface
denote vectors. For example, �n+1

� denotes the vector (�n+1
� (
i, j ))

N� j −1,N�

i=0, j=0 , arranged in a
natural ordering; that is, (�n+1

� )k =�n+1
� (
i, j ), where k = i + ∑l= j−1

l=0 N�l . Let M̂ and M
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denote the mass matrix associated with the basis functions (13) and (14), respectively; that is,

Mm,n = � i, j (
k,l), M̂m,n = �̂ i, j (
k,l), (24)

where m = k + ∑s=l−1
s=0 N�s and n = i + ∑s= j−1

s=0 N�s . By eliminating the divergence terms
from the continuity equation (23), we obtain the discrete Helmholtz equation

cos � j �
n+1
� −

(
�t

R

)2 �∗

cos � j
(D� M̂−1 D� + cos � j D� M̂−1(cos � j D�))�n+1

�

= Rn
� − �t�∗

cos � j

(
D� M̂−1 Rn

u + cos � j D� M̂−1 Rn
v

)
. (25)

Equation (25) is solved using the conjugate gradient method. Once �n+1
� is computed, U n+1

�

and V n+1
� are updated using (21) and (22).

3. NUMERICAL RESULTS

We applied the cubic spline collocation method to the complete Williamson et al. test
suite for the SWE in spherical geometry [19]. In this section, we present convergences
results for test cases 1, 2, and 4, for which analytic solutions exist, and for test case 5. We
note that the method also generated stable and convergent numerical solutions for the other
test cases (3, 6, and 7). For a detailed description of the test cases, we refer the reader to
[19]. We then compare efficiency of the method developed in Section 2 to the efficiency
of a similar method with the bicubic spline basis functions defined on a uniform grid. All
computations reported below were performed using Fortran programs in double precision
on a Dell system with a 700-MHz Pentium III processor and 128-MB RAM.

3.1. Convergence Results

Test Case 1 (Advection of Cosine Bell over the Pole)

The first test case in the suite tests the advective component of the numerical method in
isolation. A cosine bell was advected once around the sphere. The orientation of the ad-
vecting wind is determined by the parameter �, which is the angle between the axis of solid
body rotation and the polar axis of the spherical coordinate system. Advecting winds with
different orientations were simulated, including advection around the equator (� = 0), di-
rectly over the poles (� = �/2), and with minor shifts from these two orientations (� = 0.05
and �/2 − 0.05). A time step of �t = 30 min was used in all simulations. Table I contains

TABLE I

Convergence Results Test Case 1 with � = �/2 after 12 Days

N� l1(�) Rate l2(�) Rate l∞(�) Rate

16 1.0898E-1 — 1.5966E-1 — 3.0899E-1 —
32 5.1729E-2 1.08 7.8566E-2 1.02 1.4118E-1 1.13
64 2.6225E-2 0.98 4.0053E-2 0.97 7.1033E-2 0.99

128 1.3388E-2 0.97 2.0166E-2 0.99 3.6012E-2 0.98
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TABLE II

Convergence Results for Test Case 2 with � = 0 after 5 Days

N� l1(�) Rate l2(�) Rate l∞(�) Rate

16 1.7964E-5 — 2.5216E-5 — 4.9508E-5 —
32 1.2117E-6 3.89 1.5543E-6 4.02 2.8276E-6 4.13
64 7.8404E-8 3.95 9.9183E-8 3.97 1.7919E-7 3.98

128 5.8822E-9 3.74 7.0227E-9 3.82 1.2341E-9 3.86

normalized global errors in � after 12 days for � = �/2 for successively refined spatial
resolutions. The definitions for the L1-, L2-, and L∞-error norms, denoted by l1, l2, and l∞,
respectively, can be found in [19]. In most of the simulations (except for N� = 16), solutions
translated with little change in shape. However, because the second derivatives in the initial
data are discontinuous, solutions for case 1 show only first-order convergence in space.

Test Case 2 (Global Steady State Nonlinear Zonal Geostrophic Flow)

This case is a steady state solution to the nonlinear SWE. It consists of solid body
rotation or zonal flow with the corresponding geostrophic height field. The wind velocity
and geopotential are initially (and for all time) given by

u = u0(cos � cos � + cos � sin � sin �), (26)

v = −u0 sin � sin �, (27)

� = �0 −
(

R�u0 + u2
0

2

)
(−cos � cos � sin � + sin � cos �)2, (28)

where u0 = 2�R/(12 days), �0 = 2.94 × 104 m2/s2, and �, as in test case 1, is the angle
between the axis of solid body rotation and the polar axis of the spherical coordinate system.

A time step of �t = 30 min was used. Tables II and III show normalized global errors in
� after 5 days for � = 0 and �/2, respectively, for successively refined spatial resolutions.
Fourth-order convergence was observed with � = 0, but third-order convergence was ob-
tained for � = �/2 and for other nonzero � values (e.g., �/4, results not shown). Similar
convergence results were also obtained for U and V .

Cubic spline interpolants exhibit fourth-order superconvergence at grid points [5, 9, 14],
and the cubic spline collocation method yields fourth-order approximations for a first-order
differential problem. In this implementation, spatial discretization is done on the first-order
system (15)–(17) before the divergence terms are eliminated, in order for the method to

TABLE III

Convergence Results for Test Case 2 with � = �/2 after 5 Days

N� l1(�) Rate l2(�) Rate l∞(�) Rate

16 1.6517E-5 — 2.0901E-5 — 4.2503E-5 —
32 2.0362E-6 3.02 2.5236E-6 3.05 4.9571E-6 3.10
64 2.6534E-7 2.94 3.0470E-7 3.01 5.7415E-7 2.95

128 3.6295E-8 2.87 3.9158E-8 2.96 7.4300E-8 2.95
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be neutrally stable for the Rossby waves [17]. As a results, the Helmholtz equation (25) is
actually a pseudo-Helmholtz equation, in the sense that the second derivatives of �n+1

� are
approximated by applying the first derivative operators twice. Thus, one may expect the
numerical solutions obtained using the cubic spline collocation method to exhibit fourth-
order convergence. This is indeed the case for � = 0, in which the geopotential is given by

� =�0 −
(

R�u0 + u2
0

2

)
sin2 �. (29)

However, only third-order convergence was obtained for � = �/2. In this case, the geopo-
tential is given by

� =�0 −
(

R�u0 + u2
0

2

)
(cos � cos �)2. (30)

At the beginning of the simulation with� = �/2, large errors were observed near the poles. In
fact, the errors in a short simulation (about a day) were fourth order except near the poles;
close to the poles, the errors were found to be third order. We attribute this suboptimal
convergence (i.e., a convergence that is less than fourth order) to the 1/ cos � terms in the
Helmholtz equation (25). These terms become O(1/��) as � approaches ±�/2, giving rise
to larger truncation errors and reducing the order of convergence by one near the poles. As
the stimulation progressed, these larger errors propagated over the sphere and eventually
contaminated the rest of the solution. The phenomenon has been reported elsewhere [18].

Suboptimal convergence was not observed in the case of � = 0 for the following reasons.
The 1/ cos � terms in (25) are associated with the � derivative of �n+1

� and with Rn
u . It

follows form (29) that D��n+1
� ≈ 0. Morever, every term in Rn

u is either approximately zero
(e.g., D��n−1

� ) or is scaled by cos � (e.g., U n
� and V n

�). Therefore, the errors remained fourth
order even close to the poles.

Test Case 4 (Forced Nonlinear System with a Translating Low)

In this test case forcing terms are added to the right sides of (4)–(6) so that analytic
solutions are known a priori for the resulting nonlinear unsteady equations. A time step
of �t = 15 min was used. Table IV shows normalized global errors in � after 5 days for
different spatial resolutions. In this test, the activities of the geopotential as well as the wind
velocities are limited to regions that are relatively far away from the poles (the center of
the low is initially located at (0, �/4)). As a results, fourth-order spatial convergence was
obtained for � (see Table IV) and also for U and V (results not shown).

TABLE IV

Convergence Results for Test Case 4

N� l1(�) Rate l2(�) Rate l∞(�) Rate

16 3.3350E-4 — 7.1577E-4 — 6.1468E-3 —
32 2.0700E-5 4.01 4.0598E-5 4.14 3.7627E-4 4.03
64 1.4157E-6 3.87 2.6087E-6 3.96 4.1572E-5 3.25

128 9.5412E-8 3.89 1.7842E-7 3.87 2.3744E-6 4.13
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Test Case 5 (Zonal Flow over an Isolated Mountain)

Test case 5 consists of zonal flow as in case 2, with � = 0, impinging on a mountain.
Because the analytic solution is not known for this case, we compared our results to highly
refined spectral transform solutions [12]. As in the reference solution, explicit diffusion
was used to maintain numerical stability. At each time step, we applied to the prognostic
variables the scale- and resolution-dependent filter

�n ← �n − c��4∇4�n, (31)

where � =�, U , or V , and c = 10−4 R4. By scaling the diffusion term by ��4, we ensure
that the discrepancy introduced by the explicit diffusion to the numerical solution is of
the same order as the spatial truncation error and, as a result, does not affect the spatial
convergence rate. Explicit diffusion was also used in our simulations of cases 6 and 7.

A time step of �t = 15 min was used. Figure 2 shows the evolution of normalized L2-error
in �, computed on sucessively refined spatial resolutions, for 15 days. The numerical solu-
tions were stable but errors failed to converge to zero for two reasons. First, the zonal flow
initial conditions and the topography are not in geostrophic balance. Thus, gravity waves of
significant magnitude are generated; these waves are poorly resolved by the semi-implicit
reference solution (and by our solution), resulting in an uncertainly of approximately 10−3

in the normalized L∞ geopotential error. Furthermore, the orography has a discontinuous
first derivative and thus violates the smoothness assumption in the cubic spline expan-
sion. Despite these difficulties, our method, coupled with explicit damping, was stable
and produced convergent approximations. Indeed, for resolutions higher than N� = 64, the
normalized geopotential error remains approximately 10−3 for 15 days.
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FIG. 2. Evolution of normalized l2 geopotential error for test case 5 for 15 days.
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3.2. Efficiency Results

In this section, we compare the cubic spline collocation method developed in Section 2
to a similar method derived on a uniform latitude–longitude grid. We refer to these two
methods as the skipped-grid formulation and the uniform-grid formulation, respectively, of
the cubic spline collocation method.

On a uniform grid, N� j , the number of grid points along the j th latitude circle, is given
by

N� j =
{

0, j = 0, N�,

2N�, 0 < j < N�.
(32)

The bicubic spline basis functions, {	̂i, j } and {	i, j }, for the uniform-grid formulation are
given by (13) and (14), respectively.

Test case 2 with � = �/2 is used in the efficiency study. Figure 3 shows the L2-errors
for the geopotential, after 5 days, versus total computational time in seconds for the two
formulations, in a log–log plot, for N� = 16, 32, 64, and 128. The curve for the skipped-grid
formulation has a slope of approximately −1.5; the curve for the uniform-grid formulation
has a similar slope at low resolutions, but the slope becomes less negative at high resolutions,
which implies a reduction in efficiency.

A time step �t of 30 min was used in all simulations for the skipped-grid formulation. As
the spatial resolution increased, the errors decreased at a rate of approximately O(��3) (see
Table III). Because the cubic splines give rise to sparse matrices withO(N 2

� ) entries, provided
that the number of the conjugate gradient iterations remains approximately constant as N�
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FIG. 3. Efficiency results for skipped-grid and uniform-grid formulations.
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increases, the total work in the method should increase by about a factor of four as N� is
doubled. Indeed, our results show that the computation cost of the skipped-grid formulation
increases approximately quadratically.

The uniform-grid formulation gives rise to more accurate solutions: l2(�) = 1.9872 ×
10−5, 2.1414 × 10−6, 2.3327 × 10−7, and 2.5832 × 10−8 for N� = 16, 32, 64, and 128,
respectively. However, the uniform-grid formulation is also more expensive, since the uni-
form grid has approximately 25% more grid points than the skipped grid for the same N� .
Consequently, the uniform-grid formulation is slightly less efficient than the skipped-grid
formulation for this problem at low resolutions (N� = 16 and 32). As the spatial grid is re-
fined, the efficiency of the uniform-grid formulation deteriorates (the slope of its error-cost
curve in Fig. 3 becomes less negative). This is because at higher resolutions (N� ≥ 64), a
smaller time step is required to maintain numerical stability owing to the CFL condition.
Specifically, a time step of 30 min, which is the same as that used for the skipped-grid
formulation, was used for N� = 16 and 32. At N� = 64, the CFL restriction reduced the
time step to 12 min, and the time step was further reduced to 3 min at N� = 128. Thus,
for N� ≥ 64, the computation cost of the uniform-grid fromulation increases as O(N 4

� ). We
therefore conclude that for this problem the skipped-grid formulation is more efficient than
the uniform-grid formulation.

In the above comparison, the same time step is used for all spatial resolutions for the
skipped-grid formulation and is reduced for high resolutions (N� ≥ 64) for the uniform
formulation. If the maximum time step allows by the CFL condition is used, then the
computational complexities for the skipped-grid and uniform formulations can be shown
to be O(N 3

� ) and O(N 4
� ), respectively. In this case, the computational complexity of the

skipped-grid formulation is still lower than that of the uniform-grid formulation.

4. DISCUSSION AND SUMMARY

In most global meteorological applications, spatial discretization schemes are based on
spectral methods [11, 21] or low-order finite-difference/finite-element methods [3, 13].
Spectral methods yield high-order solutions and the spectral transform method gives rise to
elliptic equations that are computationally inexpensive to solve. However, spectral meth-
ods also give rise to dense matrices and the spectral transform method requires Legendre
transforms, which have a computational complexity of O(N 3). On the other hand, finite-
element methods may have a computational complexity of O(N 2); these methods also have
more potential for parallelism and give rise to reasonably scalable parallel implementations.
Therefore, high-order finite-element methods seem to be a viable alternative to the spectral
transform method.

In this paper, we present a numerical method that combines the semi-implicit leapfrog
scheme and the cubic spline collocation method for solving the SWE on the sphere. Dis-
cretization is done on a skipped latitude–longitude grid, and bicubic spline basis functions
are constructed to satisfy the boundary conditions imposed on the target functions. Numeri-
cal results for the standard SWE test cases [19] are presented to demonstrate the stability and
accuracy of the method. In particular, the poles do not introduce any numerical instability.
The method gives rise to numerical approximations that are third order near the poles and
fourth order elsewhere. We also show that the method has a computational cost of O(N 2)
and that the skipped-grid formulation is more efficient than the uniform-grid formulation.
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